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Abstract

We present a theoretical investigation on new and interesting properties of the phonon
polarization field in solids. In particular, non-classical aspects of the phonon population
and an experimental scheme that would enable one to detect them will be discussed.

1. Introduction

In recent years much interest has been devoted to the investigation of quantum effects that have

no classical analogs, of which optical squeezing is the most ubiquitous one [1]. In view of the successful
generation and detection of squeezed states of the electromagnetic (e.m.) field it is natural to ask

whether analogous states exist and can be observed for other boson fields. Condensed matter exhibits

a variety of bosons that, via the interaction with an external field, can be excited into a squeezed

state in much the same way as done with photons.

It was previously pointed out [2] that in a phonon-polariton [3,4], a mixed mode in which an

optical phonon is coupled to a photon, the photon component exhibits non-poissonian quantum

statistics and optical squeezing [2,5]. Owing to the quadratic nature of the transformation that takes

one from coupled bare phonons plus bare photons to a polariton, where phonons and photons appear as

exactly dual particles, we demonstrate that the phonon component of a polariton exhibits analogous
properties. We further analyse an experiment that would enable one to detect such delicate features

in solids with an appreciable effect.

2. Phonon-polariton

Many topics in solids combine wave and particle aspects. Exactly as the photon describes the

particle nature of the e.m. field, the phonon describes the particle nature of a lattice vibration [6].

Under certain conditions these two excitations may interact: at resonance, transverse optical phonons

and photons couple and the character of the propagation inside the crystal is entirely changed. The

pioneering work of Pekar [7], Fano [4], and Hopfield [8] has shown that eigenstates of the coupled
system of a lattice vibration and radiation are composite particles made of photons and phonons, i.e.

phonon-polaritons (polaritons hereafter). This represents the quantomechanical equivalent of the

classical work of Huang [9] who first derived the dispersion for infrared active optical lattice

vibrations of a cubic ionic crystal, showing that the actual modes propagating in the crystal are

radiation-lattice coupled waves. A typical dispersion curve (no spatial dispersion) for a polariton is

shown in Fig. 1 below.

3. Squeezed states

Squeezed states are quantum states in which the fluctuations in one of the phase quadratures of

the field are reduced below the vacuum noise limit [1]. Single and tw0-modes squeezed states have
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Fig.1 Schematic polariton energy
spectrum. UP and LP denote upper

and lower dispersion branches, caT

and ¢oL are transverse and logitudinal
phonon resonant frequencies.

been extensively studied [1], and experiments [1] have already

demonstrated their realizability in the case of an e.m. field.

If al and /_t denote two independent bosons, one can

introduce [2] a two-mode squeezed state for the mixed boson

_1 = O_l_l +[31bl as a displaced state of the squeezed vacuum

Ir 2>= b(r,2). =

-t "t • " _ "f "_

= {e-½Or:*+_r2_*)2er, r, erZr, lle (r,r_-r, rz)}lO) (1)

D(_'I2) and Slr2(r)are two-mode displacement and squeeze

operators [10], respectively, whereas the other symbols have

their usual meaning, r, the squeeze factor, mediates the

coupling between the two modes 1 and 2. In the states l_'12 )

these modes become so tightly correlated that they no longer

fluctuate independently by even the small amount allowed in a
coherent or vacuum state [1].

4. Non-classical phonons

The objective of this section is to show that a polariton

state is a non-classical state and that the phonon counterpart
associated with it exhibits non-classical features. We will

restrict ourselves to two-mode polariton coherent states. In particular, these states are most suitable

to describe the actual experimental scheme which we will discuss below. They can be constructed

[2,11,12] from the polariton vacuum [0)eo_, defined as _+_10_m_ = 0, _±_ being the polariton

transformation [8]

(2)

IU,_l 2 =1 _'+_ Cr + e2i¢ * 2y_Srl yields the average number of polaritons in the state (2), where the

_'±_'s are the eigenvalues of the bose operator _'±_- ± ^ +e _z[ ± ^-0_ a±_ _ b,_. The a's and /_'s are

respectively photon and phonon bare field annihilation operators. The real parameters

± + +
[_¢_ ,/J_ ,X_, _,r_} are mode and material dependent [2].

One should focus at this point on the structure of the polariton vacuum state. It has been the

object of an exhaustive study not only by us [2,13], but also other workers [14] though within different

contexts. In this rather interesting work a crucial common result emerged: the polariton vacuum 10)eot

is unitarily related to the bare particles vacuum 10) by a transformation of squeezing [1,10], that is

• " "? "'r
10),o_ = ,_(}'_+,ra )10) = era (ra _'_a- r_ r2_)10)

(3)
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rk gives the amount of squeezing in the mode k. It is then clear from Eq.s (2) and (3) that a polariton

coherent state is an instance of the two mode squeezed state defined in Eq. (1), 1 and 2 referring to

counterpropagating wavevector modes.

It also follows from Eq.s (2) and (3) that for those k's for which S -= 1 the state IT/+k)_ reduces

to a bare particle coherent state, obtained by displacing the bare vacuum 10); but for those k's for

which S _ ], owing to purely quadratic terms in the photon and phonon creation and annihilation

operators, IT]±k)Pot acquires a significantly more complicated structure. The non-classical character of

a polariton state is clearly related to the parameter rk. Owing to the wide breadth of values that r_

can take on [2,5,15] one presume to create a polariton state with strong enough non-classical character
so as to produce a sensitive result in the detection process. To this extent we recall from the results

reported in [15] that, for a GaSb crystal, rk may vary across the polariton spectrum between values

bigger than I to values that are even two orders of magnitude smaller.

Non-classical phonons in a po!ariton would be commonly characterised by a non-classical
probability density distribution of the number of phonons in the polariton state [1,16]. In a polariton

coherent state, unlike a polariton number state, no definite number of polaritons exists, but a well

defined probability corresponds to each polariton number with a distribution of probabilities known

to be classical [1,2,16]. Nonetheless, the distribution of its phonon component is in general not

classical, witl_ the most striking eff_ts occurring where the squeezed structure of a polariton is most
enhanced.
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Fig.2 Probability distributions for observing n phonons in a GaSb-polariton [15] for the two

modes k, = lOcm -_ [r = 2.0] (left) and k, = 5.5" 10 3cm -l [r =I 5- 10 -2 ] (onset)

The phonon number distribution in a polariton coherent state consists indeed of two contributions [15],
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Po_. osc
 ocoh-= ocoh (4)

a Poisson one (_coh) whose structure remains as such through the whole spectrum, and an oscillating

one (_oc,_'_) whose size depends on the polariton dispersion. For those modes k's for which rk =, 0 (Fig.

2 onset) _coh reduces to the Poisson distribution S_coh (classical limit), whereas for those k's for

which rk _ 0 (Fig. 2) the component _O_ will contribute with strong oscillations in the large n side

of the distribution (non-classical limit). In this limit, quasi-periodic oscillations give rise to a

remarkable effect of "quantization" in the phonon population which appears to be a distinctive non-

classical feature of the phonon field in the polariton state (2). The two limits are illustrated in Fig. 2
through a numerical evaluation of Eq. (4) for GaSb polaritons [15].

5. Detection

The objective of this section is to address the question of how to probe the non-classical

characteristics of the phonon field of a polariton discussed above. Probing the phonon number

distribution associated with a specific structure of the polariton state is problematic if one decides to

use particle-counting techniques analogous to those generally employed in the optical domain.

Conversely, it would be possible to probe directly the non-classical structure of the polariton state
that yields a non-classical phonon density distribution.

The idea consists in establishing coherence between two scattering processes that involve the
_bsorption of two different wavevector phonon modes. Coherence would then produce constructive or

destructive interference depending on whether the polariton is in a non-classical or classical state.

Thus a measurement of the rate with which the probe scatters off of the phonon field of a polariton
would provide a signature of the non-classical character of a polariton state.

This idea can be implemented as follows. Let a two-mode polariton be excited in a crystal, the

modes referring to counterpropagating wavevectors of magnitude Ikol and frequency co,. Then let a

two-components probe beam, having high coupling efficiency to the phonon part of the polariton

(neutrons e.g.), impinge on the crystal: both probe components have incident energy O)i,,c, but different

wavevectors k a and ks (Fig. 3). The kinematics of the scattering process is described simply by the

general conservation of energy and momentum (wavevector). Taking advantage of these laws, the

input probe beam can be arranged so that the incoming probe is scattered into a given output state

lout)p, only when absorption off of the modes k o and -k o occurs as schematically illustrated in Fig.3.
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Fig.3 Scatteringprocesses
involvingthe absorptionof
two counterpropagatin8

phonons with energy 60.,

and wavevectors ko and

-k o. With the probe in the

state lin)_(Eq. 5). the two

processes can coherently
interfere when the phonon
field is sque_ed.
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Now let the detector be arranged so that only a probe in a final state of momentum k/and energy CO/

be detected and let the incoming probe be in a coherent superposition of states with wavevectors k d

and ks,

lout)p, =e_ IO)r. lin)_, =[ A_ +e '%" B_]lO)p, (5)

A,B and tpp r are respectively the real amplitudes and relative phase of the two components probe.

These parameters can be all made to be controllable.

The relevant scattering rate (lowest order), when a polariton is initially excited into a coherent
state, is

pO/ O

¢7_oh(ko,A,f ,¢Ppr)= O'P°_'(ko,A,f°,rPpr)+ s_O'°sc'(ko,A,f°,rPp,)
(6)

denoting by fo the scattering amplitude for the process. The rate consists of two parts: one

r/_ P oias
independent of ro =- rko arising from the classical part of the distribution 5"cob and one ro-dependent

coming from the oscillating counterpart gOc°*oCh(cf. Eq. 4). The relative size of these two contributions

does play a significant role in determining the magnitude of the scattering rate. Namely, when

polariton modes Ikol are populated for which is ro = 0 Eq. (6) is approximated by

po/ o
Cr;oh(ko'a'f )= °'P°is"'(ko'A'f°'q_) (7)

In this case we can show [15] that for suitable values of the amplitude A there exists a phase (Ppr for

which CrP°m" --4 0 so that the lowest-order scattering can be completely inhibited. On the contrary,

when polariton modes Ikol are populated for which is ro _ 0 the second contribution (~ s_ ) in Eq. (6)

is not negligible and can be shown to be always positive defined [15]. For these modes the rate turns

out to be always greater or equal to (7 °_', but never 0.

Hence rate measurements would permit one to discern the non-classical and classical character of

a polariton coherent state. Destructive interference, able to suppress the rate with which a probe is

scattered, is a signature of a classical polariton state, conversely constructive interference, yielding in

principle a nonvanishing rate, is exhibited when the polariton state is non-classical (squeezed).

6. Discussion

Squeezed states, a familiy of pure quantum states having no classical analogue, have appeared
in the literature since 1960's. In particular, extensive theoretical investigations for the realization of

squeezed states of the electromagnetic field are also of long lasting. Only recently was the

experimental realization of squeezed light with fewer quantum fluctuations than the vacuum

achieved. To date there have been no reports, however, of the existence of non-classical states in

condensed media, but the situation appears to be rather favorable for polaritons. This crystal mixed



quasiparticle appears to be indeed a promising place where to look for non-classical states of light

and other bosons, such as e.g. phonons, especially if extremely low loss crystals can be obtained.

A further extension of this work would include considerations on the physical origin of the non-

classical effects discussed above. Intermode correlation resulting from the quadratic transformation

that takes one from coupled bare photon plus bare phonon to polaritons is a plausible origin for the

squeezed structure of a polariton state and ultimately for the non-classical features of the phonon
component associated with it.

In a real material elementary excitations and quasi-particles normally experience dissipation

and phase destroying processes that may degrade the structure of the non-classical state inside the

medium. For a complete treatment and in view of the possible experimental realizability of our

findings the model presented here should further be extended to include various dissipative processes
that randomize the phase of coherent superposition states on very short time scales. Such an

investigation would afford the inclusion of irreversible couplings on the basis of the master equation.

Non-classical states have great fundamental significance and are extremely appealing in their

own right as a test of basic quantum theories as well as perhaps for practical applications. The idea

of searching for non-classical states of phonons in solids is certainly expected to add a new dimension
to the search for non-classical behaviour.
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